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ABSTRACT

A modification of the classical Cook’s distance is proposed, providing us with a generalized
Mahalanobis distance in the context of multivariate elliptical linear regression models. We
establish the exact distribution of a pivotal type statistics based on this generalized Maha-
lanobis distance, which provides critical points for the identification of outlier data points. We
illustrate the procedure with an example, in the context of multiple and multivariate linear
regression.

1. INTRODUCTION

The identification problem of outliers or influential data, in the univariate or multivariate linear
regression setting and under the assumption of Gaussian errors has been studied by several
authors like Cook (1977), Besley et al. (1980), Cook and Weisberg (1982) and Chatterjee and
Hadi (1988), just to mention a few. Most of these results has been extended to the case of
elliptical contour distributions, see for example Galea et al. (1997), Liu (2000) and Diaz-
Garcia et al. (2001), among others. One way or another, in all those works, the original idea
of the so called Cook’s distance is mentioned as a tool for identifying one influential point or
sets of influential observations. However when we use this criteria we have only critical points
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provided by an approximate central F distribution used as it was proposed by Cook (1977).
Our purpose here is to modify this distance and derive its exact distribution.

Suppose Y € IR™*P has an elliptical distribution with location parameter u € IR"*P and scale
matrix ¥ ® © € R™*™ with X € IRP*P, ¥ > 0 and © € IR™", © > 0 then the density
function is given by

fr (Y) = [B7P2101 " gt (27 (Y — w)TO7H (Y — p))]

where g : IR — [0,00) is such that /u("”_Q)/Qg(u)du < oo being a density kernel. Let us

0
denote this fact as Y ~ Elpyxp(p, X @ 0, g).
This distribution family has been studied by different authors, see for example, Fang and Zhang
(1990), Fang and Anderson (1990), Gupta and Varga (1993), among others. The elliptical
distribution family includes subfamily distribution functions such as Gaussian, Pearson type
VII and Logistic distributions, just to mention some.
Consider the multivariate linear regression model:

Y = X0 +e, (1)

where Y € IR"*? is the response matrix, X € IR"*9, with r(X) = ¢, 8 € IR?*P the matrix of
the unknown parameters and € € IR"**? is an error matrix, such that € ~ €l,x,(0,X ® I,,, g).
This model is known as multivariate linear elliptical regression model. If g is a continuous and

decreasing function, the maximum likelihood estimators for 8 and X are given by , see Fang
and Zhang [pp. 129, 1990],

B=XTX)'XTY =X"Y and E=uo(Y - X3 (Y - XB),
where X~ is the Moore-Penrose inverse of X, and 1y maximize the function
h(u) = w"g(p/u),u >0

We consider a multivariate linear elliptical regression and propose an extension and modifi-
cation of the Cook’s distance. It will allow us to derive the exact distribution for the new
distance providing a critical point to decide if a particular observation (or set of observations)
behaves as an outlier.

2. MODIFIED DISTANCE : ONE OBSERVATION

Consider the modified multivariate linear elliptical regression model,
Yiy = Xi)B" + €4, €@y ~ Elin-1)xp(0, 2" @ I _1,94:)), (2)

we get this model from (1) deleting the ith row from Y, X and €, that is, deleting the ith
observation.
For the modified model we have:

2 T —1 T — « 2 T )
Buy = Xy X)) XpYe = X5 Ye and ) =uo, (Vo) — Xo)Bu)” Y — Xi)Ba),



First of all we need to work out a simple representation for B - B(i). For that, consider the
following partition matrices:

el €l Xt
vy € X3
Y = . s Y, € IRP € = . s €; € IRP X = . , X, € IRY.
v, € X
therefore
X7
T XQT = T = T T T T
XT'X = (X1X5--- Xp) _ =Y XpX) =) Xp X + X X[ = XX + XX,
: k=1 k#i
Xy
and
Y'lT
Y2T n n
XTY = (XX Xo) | . | =D XY =) XY + XY = XY + Xy
: k=1 ki
YT

Note that if €] is the ith vector of the canonical base in IR", that is, the unit vector, e} =
0---010---0)T, then: 2’ Y =Y, " X = XT and ¢ € = €7
By Rao [pp. 33, 1973], if A is nonsingular, v and u are two arbitrary vector, then
Ayt A1

Ty\—1 _ 4—1
(ot = AT T,

therefore, if we defined A = X7X and u = v = X;, we get

(XTX) 1 x; xI'(xTXx)~!

(XTX = X:XT) = (X[ X) ™ = (XTX) 7+ s NG
with h; = X (XTX)~1X;.
By (3), we get,
B=Bay = (XTX)TXTY = (X() X)X Y
= ((X<Tz')X(i))‘1 - (XTX)_l(fi_XfigXTX)_l> XY — (X Xw) ™ XY
R Y - g - BT
() v (XTX) XX (XTx) ' XTY @

(1 — hy)



Using (3) on, the first part of (4) we have,

T —1y.yT T -1

(1 —hy)
_ Tty 1, MXTX) XY
= XTxX)"'x;v + T
_ (X)X
a (I—hy) (5)
Substituting (5) in (4)
s (XTX)IXY - (XTX) XX (XTX) I XTY
P~ = (1—hq)
= 7()((??,:)& ¥ - XXX 7XY) (6)

Now, since € = (Y — X8) = (I — XX )Y = (I — P)Y, where P is the orthogonal projector

over the image of X. Then e?TE =€ = e?T(Y - XB) =Y - XI'(XTX)"'XTY so, we
obtain: . -
PN (X' X)" " Xj€;

By = ) 7

Under the assumption of the elliptical distribution having moments, we propose the following
modification to the Cook’s distance, called D,, :

Dy = vec( — B(i))TC/af(vec(B - B(i)))_ vec(f — B(i)) (8)

Note 1. Expression (8) is no more than an extension for the squared Mahalanobis generalized
distance, see Rao and Mitra [203-206, 1971].

The second step is to find a simple expression for the variance covariance matrix Cov(vec(B —
B(i))), under the assumption that the error distribution has moments.

Recall that Y ~ &l p(1, £ ® O, g), then its characteristic function is given by

U (T) = etr(ipTT)p(tr(XTTOT))

and, E(Y) = u , Cov(vec(Y)) = cp(X ® 0), with ¢g = —2¢'(0), see Gupta and Varga [pp. 33,
1993].

Since € = e?T(Y —XpB) = e?T(I — P)Y, it is clear that vece! = (I, ® e?T(I — P))vecY,
therefore

(p® (XTX)™1X;)

vec(B — B(i)) = 1= (I, ® e?T(I — P))vecY
(I, o (XTX)' Xet (I - P)) v
B (1= ) .
(I, ® (XTX)"'X;Pl)
J A=) vecY (9)
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where P! = e?T(I — P) is the ith row of the matrix (I — P). Then

(I, ® (X" X)X, P!)

33 (I ® (X" X)X, P
Cov(vec(8 — B; = Cov(vecY L
T y\-1y.pT
e o 1), © PXT (X X) )
—hy
_EIPE e XTX) XX (XTX)TY (10)
- (1= hg)?
where X* = ¢pX.
Note that,
IPI* = e (I-P)I-P)é
el (I-P)ef
= e?Te? - e?TX(XTX)_lXTe?
= 1-X;XTx)"1xt
= 1-—hn (11)
Substituting (11) in (10) we get,
PO e (XTX) XX (xTXx)!
Cov(vec(8 — b)) = ( ( ) : ( )") (12)

(1—hi)

Let S; = 5/(ug(n — q)) and observe that E(S)) = X*, see Fang and Zhang [pp. 138, 1990] ,
then
— PN XTxX) ' X x(xTx)™!
Gov (vec(f ~ i) = - TS R (13)
— Iy

Let 7; = (X7 X)~' X;. Based on the following standard results:

1. For a € R™, a= = a”/||a||?,
2. Given A € IRP*Y, (AAT)~ = A=A~ with A=! = A~ if A is non singular,
3. Given the matrices A and B, (A® B)" = A~ ® B™,

we get,

(Cov(vec(B — By)))~ = Cov(vee(B — Bu))~
_ (S1 ®’I’i7“;~f -
- (1—hy) )
- Ll ond)



Therefore the modified Cook’s distance can be rewritten as:
Dy = vec(B — Bpy) " Cov(vec(B — Biy))~ vec(B — Bi))

<(Ip ® (XTX)"'x,PT) VecY>T (1 —h) (STt @l ((Ip ® (XTX)"1x;PT) vecY)
(1 —hy) [|ri]* (1 —hy)

(1—hi)"

Il |*
= (1—hy) tvec" V(ST ® PPL) vecY. (14)
Alternatively, since tr BXTCXD = vec! X(BT D" ® C)vec X = vec” X(DB ® CT)vec X, for

matrices of the correct sizes, we can write D, as

Dy = (1—h) e ST'YTPPY.

vec! Y (ST @ Pl rirlri PT) vecY

On the other hand, since € e?T (Y — Xﬁ) = B;Y, then,

i =
Dy = (1—h) ttrSteel
= (1—hy) ttrefs;le
= (1—hy) ters; e

In this way we have the following alternative expressions for the square of the modified Cook’s
distance:

~

(vec(B — Bs))T Cov(vec(B — Bp)))~ vec(B — B)
(1 —h) tvec" Y(S{' ® PPl vecY
(1—h) e SYTPPY
(1—h)~tel sy'e;

Note 2. According with Chatterjee and Hadi [pp. 124, 1988], we could replace the matrix S;
by one obtained using the reduced sample (n — 1), denoted by S,.

Note 3.. Cook (1977), Chatterjee and Hadi [pp. 117, 1988] , Diaz- Garcia et. al (2001), and
many others use the variance covariance matrix of vec(ﬁ) to construct the distance measure.
The reformulation we proposed is based on the replacement of that variance-covariance matrix
by the variance covariance matrix of vec(ﬁ — 3(1)). We can also find this idea on Chatterjee
and Hadi [pp. 150, 1988], for the univariate case, but for the evaluation of influential data on
a particular regression coefficient, only the variance of one coefficient is used instead of the
variance of the difference. The problem when this idea is extended to the multivariate case is
that such matrix is singular, so we need to consider the Moore-Penrose inverse for the variance
covariance matrix of vec(83 — B(i)).

Now we will consider the case when the errors from the multivariate regression model has an
elliptical distribution without moments, ( for example, when the errors have a matrix Cauchy
distribution, see Gupta and Varga [pp. 76, 1993]), then the proposed distance maybe be defined
by (15), without taking in account that,

(S1 0 (XTX) ' X, XxI'(XTX)™1)
(1= hy)
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is the variance covariance matrix of (vec (B - B(i)))- Let us called the distance matrix.

Theorem 1. Consider the elliptical regression multivariate model given by (1), were the error
distribution may or may not have moments. Then a modified squared Cook’s distance to detect
an outlier data, it can be written as:

vee(B — Bp)” 52 (XTle_l_X;;))(iT(XTX)_l)>_ vec(B — B))

D, — (1 —hy) ' vecT Y(S{' ® PiPT)vecY (16)
(1—h) e SYTPPIY
(1—hi)'el S e

Note 4. From (16) is easy to see that if we want to implement this measure for all the data
points, it is enough to fit the model once and from the usual output, we can construct the
modified distance for each point. Note that the expression D,,, on the univariate Normal
case, coincides with the analysis of studentized residuals, see Besley et al. (p. 201, 1980) and
Chatterjee (p. 78, 1988).

3. MODIFIED DISTANCE : MULTIPLE OBSERVATIONS

Let I = {iy,i9,...,ix} a subset of size k from {1,2,...,n}, such that (n — k) > ¢q. Now,
under model (1), denote by X (), Y(;) and €(;), the regression, the data and the error matrices
respectively, after deleting the corresponding observations according with the subindexes on I.
Let B( 1. and f]( 1) the corresponding maximum likelihood estimator in the model

Yoy =XnB +eny,  €uy~ Elniyxp(0, 5" ® In_k, g(1))-
Based on the equality
(A—BCDT)y ' =4+ A'B(D ' -CcTA™'B)1CcT4a™!

where A and D are non singular matrices of order s and m respectively, B and C matrices of
order s X m and using similar procedures as those from section 2, it is easy to verify that,

~

B—Bn = (XT"X)7'X;(I-Hp) ey,

with (I — Hy) = (I, — XF(XTX)7'X;) and X; the matrix with the corresponding rows of X
according with I. Observe that, €, = Ul € = U} (I — P)Y, where

We get,

~ ~

vee (B = By) = (I, ® (XTX) "' X, (I — H) "' Pr) vec Y,



with P, = U] (I — P).
If we consider the case of existing moments for the distribution of errors,

Cov(vec(B — i) = (£* @ (XTX) "' X, (I - H) ' X7 (XTx)™)

and
Cov(vec(B — Bny)) = (S1® (XTX) ' X;(I - H) ' X (XxTX)™")

Under the same arguments for the non existing moments given in section 2, we have,
Theorem 2. Consider the elliptical regression multivariate model given by (1), were the € may

or may not have moments. Then a modified squared Cook’s distance to detect k influential data
points , it can be written as

(vee(B — By (S1 @ (XTX) "' X (I — Hy) 7' X[ (XTX) ™)~ vee(B — Bin)
vec! Y (S;' @ PF(I — Hy)™'Pr)vecY
tr S;'YTPI(I — H) "' PrY

L tr 51_1’6\?([ — H[)_IE[

4. DISTRIBUTION FUNCTIONS ASSOCIATED WITH THE MODIFIED DISTANCES

The main reason to explore the modifications given in section 2 and 3 for the squared Cook’s
distance is that, instead of using an approximate F distribution we will be able to derived an
exact distribution for D,, , which is invariant under the family of elliptical distributions. We
propose a pivotal type estimator with an exact distribution for D, , the case of detection of
several influential data simultaneously.

We will derive the distribution under the pivotal statistics for both cases: one influential
observation at that time and multiple observations.

Theorem 3. Under the assumptions of Theorem 1, we have,

(n—q—p)

Df ~ F
pn—q—1)""

p,(n—q—p) (18)

where F, (n_q—p) denote a central F distribution with p and (n—q — p) degrees of freedom (df)

and D}, is given by (15) substituting S1 by S1,, see Note 2.

Proof : It follows immediately from Theorem 5.2.2 in Anderson [p. 163, 1984] and Theorem

5.1.1 from Fang and Zhang [pp. 154, 158, 1990]. n
From Theorem 3, given a significance level «, we may write the following decision rule:
Y;,,i=1,2,...,n, is an outlier observation if
=4=p) pe s p (19)
pln—qg—1"m" a:p,(n—q—p)



where F.; (n—q—p) the corresponding upper a — percentil from a F distribution with p and

(n—q—p) df.

Note 5. For the univariate case, p = 1, the decision rule becomes: Y;, i = 1,2,...,n, is an
outlier if

D;kn > fa:l,(n—q—l) (20)

where F.1 (n—g—1) is the a — percentil from a F distribution with 1 and (n — ¢ — 1) df, or
equivalently:
D:nl/Q > ta/?:(n—q—l) (21)

where ¢, /9.(,—q—1) i the upper a/2 — percentil of a t distribution with (n —q —1) df.
In a similar way, when we deal with multiple observations:

Theorem 4. Under the assumptions of Theorem 2, we have,
Dy,

m ~ LHs,m,h (22)

where LH ., denote the central distribution for the Lawley-Hotelling statistics with parame-
ters s = min(p,k),m = ([p — k| = 1)/2 and h = (n —q —p — 1)/2 and Dy, is given by (17)
substituting S1 by S1,.

Proof: It follows immediately from Theorem 5.3.1 from Gupta A.K and Varga T. [pp. 182,
301, 1993] and Theorem 10.6.2 , Corolary 10.6.3, in Muirhead [pp. 468-471 and p. 471, 1982].

(]
5. AN APPLICATION

We illustrate the use of the exact test given in Section 4 under two scenarios : simple regression
and multivariate multiple regression.

The first data set was presented by Cook and Weisberg (pp. 204-207, 1994). This is a small
data set with observations on 21 children, giving their AGE in months at first spoken word,
and a SCORE, which is a measure of the development of the child. A plot (AGE, SCORE)
is given in Figure 1 a). It is clear that are three observations that have a distinguishable
behavior: 18, 1 and 17. If we think on an ordinary least squares (OLS) linear fit, SCORE
seems to decrease with AGE . Case 18 appears to be poorly fitted by the linear trend, relative
to the other data. Cases 1 and 17, have relatively large values of AGE. Figure 1 b), shows the
Q-Q plot of the residuals from the OLS linear fit. It is clear that only observation 18 seems to



be a candidate for an outlier as it is defined in Chatterjee (pp.94-95, 1988).

Figure 1. Original data for the adaptive score measure and a Q-Q plot for the residual on the
simple regression of SCORE on AGE.

Figure 2 shows the identification and detection of influential and outlier points, using different
techniques. This analysis emphasize the fact mentioned before: studentized residuals coincide
with the modified distance for the univariate case. Moreover studentized residuals are the base
for the John and Draper distance as it is discussed in Draper and Smith (pp. 169-175, 1981).
Figure 2 a) shows how the Cook’s distance detects observation 17th, which is a leverage point
as it is described in Cook and Weisberg (1994). Taking into account Figure 1 b) and according
with Figures 2 b) and 2 c), observation 18 was a candidate for an outlier and the tests are
in favor to declare observation 18th as an outlier observation. Note that the critical value in
Figure 2 ¢) is the approximate value of an F-distribution multiplied by s2() for i = 18 in order
to plot the original distance of Draper and John.

For the multivariate multiple regression example, we generated 19 observations from a model
y = X+ ¢, with normal errors, p = 2, and ¢ = 4.
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Figure 2. Identification of influence and outlier points based on a) Cook’s Distance, b) The
Modified Cook’s Distance according with (20), ¢) Draper & John Distance. n = 21, ¢ = 2,
p = 1 and s?(i) , the residual variance without the i-th observation was use in all the cases
according with Note 2.

We fitted the model and constructed E, the residual sum of square matrix, then applied the
Mahalanobis squared distance as it is shown in Seber (pp. 152-153, 1984). Figure 3 a) shows
the Mahalanobis squared distance and suggests observations 10 and 11 as possible outliers. We
applied (22), with k=2, Dm = 4.77, compared with a critical value of 3.015; the percentile
is approximated by an F distribution as suggested by Seber (pp. 38-39, 563-564, 1984). The
test is in favor of considering observations 10 and 11 as outliers.
Figure 3 b) shows the same analysis taken one observation at a time. We use an F test based
on (1 — a/n) instead of (1 — a) to get a simultaneous test with a nominal level at least . In
this case we get the same conclusion as with the test based on k observations. We recommend
the use of the test based on k observations as given in (22), and selecting the k point using a
graphical method as the one given in Figure 3 a).

It is important to recall this test is valid under elliptical distributions and not only for the
normal error case.

Figure 3. Identification of outliers based on the Mahalanobis Distance on the residual matrix
and detection of outliers based on the Modified Cook’s Distance as given in Theorem 3.
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